
New Agent Architecture for
Evaluation in Goddard's Agent Concepts Testbed

Walt Truszkowski

NASA Goddard Space Flight Center
Code 588.0

Greenbelt, MD 20771
301-286-8821

Walt.Truszkowski@gsfc.nasa.gov

Christopher Rouff

NASA Goddard Space Flight Center
Code 588.0

Greenbelt, MD 20771
301-286-8821

Chris.Rouff@gsfc.nasa.gov

ABSTRACT

This paper presents the agent architecture that is being developed
by the Goddard Space Flight Center as part of its program to
investigate the role of agents and communities of agents in
realizing autonomy of both ground-based and space-based
systems. The agent architecture is component-based and each
component and its dynamic behavior is described. An overview of
an operational scenario that is being developed in the Agent
Concepts Testbed (ACT) to evaluate the architecture is presented.

Keywords

Agent, architecture, component, behavior

1. INTRODUCTION
NASA has set for itself far-reaching autonomy goals for both its
ground-based and space-based systems. More reliance on
"intelligent" systems and less reliance on human intervention
characterize its autonomy goals. These goals are further
complicated by NASA's plans to use constellations of
nanosatellites for future science data-gathering.

The Advanced Architectures and Automation Branch at the
Goddard Space Flight Center has a leading role in the development
of agent-based approaches required to realize NASA's autonomy
goals. A past major success at Goddard was the development of a
multiagent system called LOGOS (Lights-Out Ground Operations
System) [2,3]. LOGOS provided an initial insight into the power
of communities of agents supporting ground systems operations.
Based on the success of this first prototype development has
begun on the Agent Concepts Testbed (ACT), an environment in
which richer agent and agent-community concepts will be

evaluated through detailed prototypes and comprehensive
operational ground-based and space-based scenarios. This paper
addresses the new agent architecture that will be developed and
evaluated in the ACT. It also presents a brief overview of the
operational scenario, involving a community of agents, which will
be implemented in the ACT.

2. OVERVIEW OF THE AGENT
ARCHITECTURE
A new agent architecture has been introduced for evaluation in the
Agent Concepts Testbed (ACT). The new agent architecture is a
component-based architecture which allows greater flexibility to
the agent designer.

A simple agent can be designed by using a minimum number of
components that would receive percepts (inputs) from the
environment and react according to those percepts. This type of
simple agent would be a reactive agent.

A robust agent may be designed using more complex components
that allow the agent to reason in a deliberative, reflexive and/or
social fashion. This robust agent would maintain models of itself,
other agents in its environment, objects in the environment that
pertain to its domain of interest, and external resources that it
might utilize in accomplishing a goal. Figure 1 depicts the
components for a robust agent. The identified components give
the agent a higher degree of intelligence when interacting with its
environment.

Percepts received through sensors, communication with external
software/systems, and other environmental entities are received
through a Perceptor component. These percepts are passed from
the Perceptor to the Modeling component where a model's state is
updated as needed. (Note, the modeling component maintains
models of objects of interest in the environment, other agents in
the community, external resources and the agent itself.) A special
Perceptor is used to send and receive messages with other agents,
this is the Agent Communication Perceptor/Effector. Incoming
Agent Communication Language (ACL) messages are formatted
and passed to the Reasoning component.

The Agent Reasoning component reasons with received ACL
messages, knowledge that it contains, and information that is

acquired from the Modeling component to formulate goals for the
agent when necessary. Goals are then acquired by the Planning
component along with state and state transition information.

The Planning component formulates a plan for the agent to achieve
the desired goals. When a plan has been developed, the Agenda
keeps track of the execution of the plan's steps. Steps are marked
when they are ready for execution and the completion status of
each step is also tracked by the Agenda.

The Execution component manages the execution of steps and
determines the success or failure of each step's execution. Output
produced during a step execution can be passed to an Effector or
the Reasoning component. The Modeling component will record
state changes caused by a step execution. When a plan is finished
executing, the Agenda component sends a completion status to the
Reasoning component to indicate that the goal established by the
Reasoner has been accomplished. If the Agent Reasoning
component is dealing with data from the environment it may
decide to either set a goal (for more deliberative planning) or react
quickly in an emergency situation. The Reasoner can also carry on
a dialog with another agent in the community through the Agent
Communication Perceptor/Effector.

The agent architecture is component-based. What is a
component? A component is a software module that performs a
defined task. Components when combined with other software
components can constitute a more robust piece of software that is
easily maintained and upgraded. Each component in the
architecture can communicate information to/from all other
components as needed through various mechanisms including a
publish and subscribe communication mechanism, message
passing, or a request for immediate data.

Components may be implemented with a degree of intelligence
through the addition of reasoning and learning functions. Each
component needs to implement certain interfaces and contain
certain properties. Components must implement functionality to
publish information, subscribe to information, and be able to
accept queries for information from other components or external
resources being used by the component. Components need to
keep a status of their state, and need to know what types of
information they contain and need from external components and
objects to function.

Goddard's emphasis has been on the development of agent
communities (rather than a large monolithic agent) to realize the
desired levels of intelligent autonomous behaviors. Community-
based approaches require an agent communication language to
support dialogs among the agents in the community. The agent
communication language under development at Goddard is based
on the Agent Communication Language (ACL) of FIPA
(Foundations of Intelligent Physical Agents - an international
organization devoted to establishing standards for agent
development) [1].

The agent architecture described above is capable of several types
of behaviors. Basically, "agent behavior" refers to the manner in
which an agent responds to some sort of stimulus, either
externally (outside the agent) or internally (within the agent)
generated. We have identified four basic classes of behaviors for
our agent to realize. These are:

? social,

? proactive,

? reactive and

Features Include:
- Component-based architecture
- Distributed knowledge bases
- Publish/subscribe mechanism for
 information sharing amoung components
- Capable of reactive, deliberative,
 and social actions
- Can support multi-modal reasoning
 (rules, cases, models)

Benefits include:
- Robust infrastructure
- Easy to update
- Easy to tailor to a domain
- Supports reuse

Environment

Agent
Communications Perceptors Effectors

Agent
Reasoning Execution

Modeling
and

State

Agenda

Output

Data Data

ACL

Reflex

Actions

Percepts

Planning
and

Scheduling

Steps

Step
Completion
Status

Plan
Requests Plans

State
Info

Plans

Status

Figure 1: ACT Agent Architecture

? deliberative.

These are further broken down by the source of the stimulus for
the behavior. The current list of behavior types is:

? social - triggered by another agent

? social - triggered by the agent itself

? proactive - self motivating

? reactive - triggered by another agent

? reactive - triggered by a percept

? deliberative - triggered by another agent

? deliberative - triggered by a percept

What follows is a brief high-level definition of each of the
identified classes of behavior.

Social .

Social behaviors refer to behaviors shared between/among agents.
The current agent architecture supports two types of social
behavior, i.e., social behavior triggered by another agent and social
behavior triggered by the agent itself. In each of these cases the
agent utilizes ACL messages to solicit help or to coordinate the
behaviors of other agents.

Proactive

This type of behavior is that which is stimulated in some way by
the agent itself. For our agents there is one type of proactive
behavior that will be supported, i.e., self motivating. Self-
motivating behaviors are triggered by built-in or intrinsic goals.

Reactive

Reactive behaviors are those that require "no thinking'. These
behaviors are like built-in reflexive actions that are triggered by
events in the agent's environment that are detected by the agent.
When detected the agent responds immediately with a
predetermined action.

Deliberative

This type of behavior is perhaps the most difficult and interesting.
At the highest level of abstraction this type of behavior involves
the establishing of an hierarchy of goals and subgoals, the
development of plans to achieve the subgoals, and the execution of
the planned steps to ultimately accomplish the goal which started
the process of deliberation in the first place.

3. ARCHITECTURE COMPONENTS
As stated above, agents in ACT are built using a component
architecture. A component is a software module that performs a
defined task. Components when combined with other software
components can constitute a more robust piece of software that is
easily maintained and upgraded. Components can be easily
swapped out and replaced by another more advanced component.
These components were introduced briefly above. What follows
is a more detailed look at each of them.

3.1 Modeler
The modeling component is responsible for maintaining the
domain model of an agent, which includes models of the
environment, other agents in the community, and the agent itself.
The Modeler receives data from the Perceptors and agent
communication component. This data is used to update state
information in its model. If the data causes a change to a state
variable the Modeler then publishes this information to other
components in the agent that have subscribed to updates to that
state variable. The Modeler is also responsible for reasoning with
the models to act proactively and reactively with the environment
and events that affect the model's state. In the future the Modeler
will also dynamically modify its model based on experience.

The modeler can also handle what-if questions. These questions
would primarily come from the planning and scheduling
component, but may also come from other agents or from a person
who wants to know what the agent would do in a given situation
or how a change its environment would effect the values in its
model.

3.2 Reasoner
The Reasoner component works with information in its local
knowledge base as well as model and state information from the
Modeler to make decisions and formulate goals for the agent. This
component reasons with state and model data to determine if any
actions need to be performed by the agent to effect its
environment, change its state, perform housekeeping tasks, or
other general activities. The Reasoner will also interpret and
reason with agent-to-agent messages that are received by the
agent's communications component. When action is necessary for
the agent, the Reasoner will produce goals for the agent to achieve.
Currently the Reasoner works more in a reactive manner. Either
an input coming in or a trigger from the clock sets it in motion.
Work is also being done to make the Reasoner more proactive.

The Reasoner currently uses a rule base to do it's reasoning, but is
being expanded to include a case based and in the future a model
based Reasoner, and neural net.

3.3 Planner/Scheduler
The Planner/Scheduler component is responsible for any agent
level planning and scheduling. The planning component is given a
goal or set of goals to fulfill in the form of a plan request. This
typically comes from the Reasoning component but may be
generated by any component in the system.

At the time that the plan request is given, the planning and
scheduling component acquires a state of the agent and system,
usually the current state, as well as the set of actions that can be
performed by this agent. This information will typically be
acquired from the modeling and state component. The planning
and scheduling component then generates a plan as a directed
graph of steps. A step is composed of preconditions to check, the
action to perform, and the expected results from the action (post
condition). When each step is created, it is passed to any Domain

Expert components/objects for verification of correctness. If a
step is deemed incorrect or dangerous, the Domain Expert may
provide an alternative step, solution, or data to be considered by
the planner.

Once the plan is completed, it is passed back to the component
that requested the plan (usually the Reasoner). The requesting
component then either passes it on to the Agenda to be executed
or uses it for planning/what-if purposes.

3.4 Agenda/Executive
The Agenda and Executive work together to execute the plans
developed by the Planner/Scheduler. The agenda typically
receives a plan from the Reasoner, though it can receive a plan
from another component that is acting in a reactive mode. The
agenda interacts with the Execution component to send the plan's
steps in order, for execution. The agenda keeps track of which
steps are being executed, finished executing, idle, or waiting for
execution. It updates the status of each step appropriately as the
step moves through the execution cycle. The agenda reports the
plan's final completion status to the Planner and Agent Reasoner
when the plan is complete.

The Executive executes the steps it receives from the Agenda. A
step contains preconditions, an action and possible post-
conditions. If the preconditions are met, the action is executed.
When executions finish, the post-conditions are evaluated, and a
completion status is generated for that step. The completion
status is returned to the agenda, which allows for overall plan
evaluation.

The execution component interacts with the agenda in the
following way. The agenda sends the first step to the execution
component. This wakes the Executive up. The component then
begins executing that step. The Executive then checks to see if
another step is ready for execution, if not, the component will go
back to sleep until it receives another step from the agenda, once
all executing steps are completed.

A watch is also attached to the executive that monitors given
conditions during execution of a set of steps and a consequence if
the condition occurs. Watches allow the planner to flag things that
have to be particularly looked out for during real-time execution.
They can be used to provide "interrupt" capabilities within the
plan. An example of a watch may be to monitor drift from a
guidance star while doing an observation. If the drift is over a
threshold, then the observation is halted. In such a case the watch
would notify the Executive which in turn would notify the
Agenda. The Agenda would then inform the Reasoner that the
plan failed and the goal was not achieved. The Reasoner would
then formulate another goal (e.g., recalibrate the star tracker).

3.5 Agent Communications
The agent communication component is responsible for sending
and receiving messages to/from other agents. The component
takes an agent data object that needs to be transmitted to another
agent and converts it to a message format understood by the

receiving agent. The message format that is being used is based on
FIPA. The message is then transmitted to the appropriate agent
though the use of a NASA developed agent messaging
protocol/software called Workplace [4].

The reverse process is performed for an incoming message. The
communications component takes the message and converts it to
an internal agent object and sends it out to the other components
that are subscribing to incoming agent messages. The
communications component can also have reactive behavior where
for a limited number of circumstances it produces an immediate
response to a message.

3.6 Perceptors/Effectors
The Perceptors are responsible for monitoring parts of the
environment for the agent. An example of what an agent might
monitor is a subsystem of a spacecraft. Any data received by the
agent from the environment, other than agent-to-agent messages,
enters through Perceptors. An agent may have zero or more
Perceptors, where each Perceptor receives information from
specific parts of the agent's environment. A Perceptor may just
receive data and pass it on to another component in the agent or it
may perform some simple filtering/conversion before passing it on
in the agent. A Perceptor may also act intelligently through the
use of reasoning systems if it is desired. If an agent is not
monitoring a part of the environment, then it would not have any
perceptors (an example of this would be an agent that only
provides expertise in a certain area, such as fault resolution).

The Effector is responsible for effecting or sending output to the
agent's environment. Any agent output data, other than agent-to-
agent messages, leaves through Effectors. Typically the data
coming from the Effectors will be sent from the executive which
has just executed a command to the agent's environment. There
may be zero or more Effectors, where each Effector sends data to
specific parts of the agent's environment. An Effector may
perform data conversions when necessary and may even act
intelligently and in a proactive manner when necessary through the
use of internal reasoning systems if it is desired. As with the
Perceptors, an agent may not have an Effector if it is not
interacting with the environment.

3.7 Agent Framework
A framework is used that the components are plugged into that
provides a base functionality for the components as well as the
inter-component communication functionality. The framework
allows components to be easily added and removed from the agent
while providing for a standard communications interface and
functionality across all components. This makes developing and
adding new components easier and makes the addition transparent
to existing components in the agent.

The communications mechanism for components is based on a
publish and subscribe model with direct links between
components when large amounts of data need to be transferred.
Components communicate to each other the types of data that it

produces when queried. When one component needs to be
informed of new data or changed data in another component it
subscribes to the particular data in the component in which it is
interested. Data can be subscribed to whenever it is changed or on
an as needed basis. With this mechanism a component can be
added or removed without having to modify the other components
in the agent.

4. DATAFLOW BETWEEN COMPONENTS
This section gives an example of how data flows between
components of the architecture. The example being used is when a
spacecraft's battery is discharging. Figure 2 shows a timeline and
the flow of data between components. The scenario reads as
follows:

? The agent detects the low voltage by reading data from the
battery via a Perceptor. The Perceptor then passes the voltage
value to the Modeler, which has subscribed to the Perceptor to
receive all percepts.

? When the Modeler receives the voltage from the Perceptor, it
converts the voltage data to a discrete value and updates this
value in the model. In this case, the updated voltage value puts

it below the acceptable threshold and changes the model's
voltage state to "low". This change in state value causes a state
change event and the Modeler now publishes the new state
value to all components that have subscribed to changes in this
state variable. Since the Reasoner has subscribed to changes in
this state variable, the low data value is sent to the Reasoner.

? In the Reasoner the low voltage value fires a rule in the expert
system. This rule calls a method that sends the
Planner/Scheduler a goal to achieve a battery voltage level that
corresponds to fully charged.

? When the Planner/Scheduler receives the goal from the
Reasoner, it queries the Modeler for the current state of the
satellite and a set of actions that can be performed (this set may
change based on the health of the satellite).

? After receiving the current state of the satellite and the set of
available actions from the Modeler, the Planner/Scheduler
formulates a list of actions that need to take place to charge the
battery. It then sends the plan back to the Reasoner for
validation.

Percepter Effector Modeler Reasoner
Planner/

Scheduler Agenda ExecutiveCommunication
Perceptor receives new voltage value and sends it to the ModelerNew value changes

state variable and is
propogated to the
Reasoner

Reasoner sets goal
to recharge battery
and sends goal to
Planner/Scheduler

P/S requests
current state from Modeler

Modeler sends P/S current state

P/S sends
 Reasoner plan

Reasoner sends the Agenda the plan

Agenda sends
Executive plan steps

Executive asks
 for next step

Charge battery command is sent to Effector, which sends it to battery charger

Perceptor receives
new voltage value and sends it to the Modeler When new value

causes state change,
it is propogated to
the Reasoner

State change is also propogated to the Executive

Executive informs Reasoner that plan has finished

Agenda informs the Reasoner when the last
 step is successfully executed

Figure 2: Scenario of data flowing between agent components.

? The Reasoner examines the set of actions received from the
Planner/Scheduler and decides that it is reasonable. The plans
are then sent to the Agenda.

? The Agenda then puts the action steps from the plan into a
queue for the Executive.

? As the Executive is ready to execute a new step, the agenda
passes them one at a time to the Executive for execution.

? The Executive executes each action until the plan is finished.
At this time the Executive notifies the Agenda that it has
finished executing the plan.

? The Agenda marks the plan as finished and notifies the
Reasoner (or who ever sent the plan) that the plan finished
successfully.

? After the plan is executed, the voltage starts to rise and will
trigger a state change in the Modeler when the voltage goes back
into the fully charged state. At this time the Reasoner is again
notified that a change in a state variable has occurred.

? The Reasoner then notes that the voltage has been restored to
the fully charged state and marks the goal as accomplished.

5. ACT OPERATIONAL SCENARIO
The agents architecture described above will be evaluated along
with some agent community concepts in ACT this coming year.
The operational scenario that has been developed is loosely based
on some nanosatellite constellation ideas.

Figure 3 graphically illustrates this scenario. It is based around the
idea of a ground-based community of proxy agents (each
representing a spacecraft in the nanosatellite constellation) which
provide for autonomous operations of the constellation. Future

scenarios will depict the migration of this community of proxy
agents to the spacecraft themselves for an evaluation of space-
based autonomy concepts.

In this scenario there are several nanosatellites in orbit collecting
magnetosphere data. The Mission Control Center (MCC) makes
contact with selected spacecraft according to its planned schedule
when the spacecrafts (S/C’s) come into view.

The agents that would make up the MCC would be:

?? Mission Manager Agent: coordinates the agent community in
the MCC, manages mission goals and coordinates Contact
Manager Agents.

?? Contact Manager Agent: coordinates ground station activities
(one agent per ground station), communicates with the
spacecraft, sends and receives data, commands, and telemetry.

?? User Interface: interfaces with the user to accept commands
for the spacecraft and sends data to be displayed.

?? MCC Planning/Scheduling Agent: plans and schedules
contacts with the spacecraft via interface with external
planner/scheduler.

?? Spacecraft Proxy Agents: there is a proxy agent for each
spacecraft in orbit. The agents keep track of spacecraft status,
health and safety, etc. The agents will notify the Mission
Manager Agent when an anomaly occurs that may need
handling.

An example of a typical contact with a satellite would be:

?? The Contact Manager Agent (CMA) receives an acquisition
of signal (AOS) from a spacecraft. The MCC is now in contact
with the spacecraft.

{ Coordinates the agent community in the MCC, manages mission goals and
coordinates the Contact manager agent}

{ Coordinates ground station activities (one agent per ground station), communicates with
 Spacecraft, sends and receives commands and telemetry }

{ Provides interface and interaction mechanisms to
 the outside world }

{ Plans and schedules contacts with the spacecraft via interface
 with external planner/scheduler (external resource) }

{ There is a proy agent for each spacecraft in orbit. The agents keep
 track of spacecraft status. The agents will flag the Mission Management
 agent when an anomaly occurs that may need handling }MCC

Manager

Contact
Manager

Agent

S/C
Agent 1
Proxy

S/C
Agent 2

Proxy

S/C
Agent N

Proxy
User

Interface
Agents

Scientists,
Engineers,
Operators

MCC Planning
and Scheduling Agent

Figure 3: Agent community being developed in ACT to test out the new agent architecture and some community concepts.

?? The CMA requests the S/C to start downloading its
telemetry data. When the telemetry is downloaded, it is sent to
a spacecraft proxy agent.

?? The proxy agent updates the state of its model of the
spacecraft from the telemetry received. If a problem exists, a
flag is raised to the Mission Manager Agent and appropriate
action (if any) is planned by the system.

? The Contact Manager Agent analyzes the downloaded
telemetry data. If the telemetry indicates a problem the CMA
may alter the current contact schedule to deal with the problem.

? The CMA executes the contact schedule to download data,
delete data, or save data for a future pass. For example, the
commands: download packet1, download packet3, delete
packet2, save packet4.

? The CMA performs any necessary commanding in parallel to
doing any data downloads.

? The Mission Manager Agent ends contact.

6. CONCLUSION
The ACT agent architecture provides for a flexible implementation
of a wide range of intelligent or reactive agents for NASA
spacecraft and ground systems. It allows for easy removal of
unneeded components for reactive agents and the inclusion of the
necessary components to implement intelligent agents. It is also
flexible so that additional unforeseen components that will
implement new AI technologies can be added as they become
available without effecting previously implemented components.

The ultimate goal of our work is to be able to transition proven
agent technology into operational NASA systems. The

implementation of the scenario discussed above (and others under
development) in the ACT will provide an opportunity to exercise
and evaluate the capabilities supported by the agent architecture
and refine the architecture as required. It will also provide an
opportunity for space mission designers and developers to "see"
agent technology in action. This will enable them to make a better
determination of the role that agent technology can play in their
missions.

7. ACKNOWLEDGMENTS
We would like to acknowledge the other members of the ACT
development team at Goddard, which include James Rash, Tom
Grubb, Troy Ames, Carl Hostetter, Jeff Hosler, Matt Brandt,
Dave Kocur, Kevin Stewart, Jay Karlin, Victoria Yoon, Chariya
Peterson, and Dave Zock (who are or have been members of the
Goddard Agent Group) for their major contributions.

8. REFERENCES
[1] Foundation for Intelligent Physical Agents (FIPA). FIPA

Specification Part 2: Agent Communication Language.
Geneva, Switzerland. November 28, 1997.

[2] LOGOS Overview, Design and Specification Documents.
http://agents.gsfc.nasa.gov/products.html.

[3] Truszkowski, W., and Hallock, L. Agent Technology from a
NASA Perspective. CIA-99, Third International Workshop
on Cooperative Information Agents, Uppsala, Sweden, 31
July – 2 August 1999, Springer-Verlag.

[4] LOGOS System Overview Document.
http://agents.gsfc.nasa.gov/documents/code588/LOGO
S.stuff/logosoverview.pdf

